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LETTER TO THE EDITOR 

A mean-field approximation to the two-band modell for 
copper oxide superconductors: normal-state properties 

Sanjoy K Sarker 
Department of Physics and Astronomy. University of Alabama. Tuscaloosa. AL 35187. 
USA 

Received 3 October 1988 

Abstract. The normal-state properties of a high-ir, superconductor are studied using a mean- 
field approximation. It is found that the excess holes in the oxygen orbitals form unusual 
metallic bands. The spin of the moving hole is bound as a singlet to the underlying copper 
spins because of strong exchange interaction. Thus the charge carrier has charge e and spin 
zero. Binding causes the holes to be heavy. but not as heavy as in a Kondo lattice system. It 
is also found that the condensation (or binding) temperature. the Fermi temperature and 
the band gap are distinct (i.e.. there is no scaling). 

It has been suggested that pairing in high-temperature superconductors (Bednorz and 
Miiller 1986) arises from a purely electronic mechanism. Anderson (1987) has proposed 
a resonating-valence-bond (RVB) picture based on the large-Uone-band Hubbard model 
for the two-dimensional (2D) copper sublattice with a finite concentration of empty sites. 
On the other hand, the correct starting point should be a model originally proposed by 
Emery (1987), which involves both the copper and the oxygen orbitals. Zhang and Rice 
(1988) have recently constructed a mapping in which the two-band model is reduced to 
a one-band model. Their main argument is that an excess hole in an oxygen orbital will 
bind strongly with a copper spin-the binding energy being of the order of], the oxygen- 
copper exchange energy. If J is much larger than the copper-copper exchange energy 
Jdd, then the effect is to remove a copper spin. thus creating an *empty’ site on the copper 
sublattice. 

In this Letter, we consider the effect of binding directly in the context of the two- 
band model. In particular, we study the normal-state behaviour of the excess holes when 
the excess hole concentration is sufficiently large. We consider the model Hamiltonian 

where c:, ( a X )  creates a hole at the copper (oxygen) site, and nr, = ci,cru. The index 
1 = 1 , 2  denotes the position of the oxygen site relative to a copper site. The operatorf,, 
is the sum of the four a-operators surrounding a copper site: 

f r u  = arlu - a r - f , l o  + ar2o - a r - y . 2 u .  

In model (1) E, > E ~ ,  and Uis much larger than all the other energy scales, so double 
occupancy of a copper site is rare. The total hole density is taken to be n = 1 + 6. For 
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6 = 0, most of the holes are at the copper sites. Generally, we could add a repulsive U- 
term for the oxygen sites also. We ignore this term on the assumption that 6 is sufficientiv 
small that there are few doubly occupied oxygen sites. The Coulomb repulsion energy 
V of the copper and oxygen holes is assumed to be smaller than U ,  and in the simplest 
approximation serves to renormalise the level positions; we thus assume that E ,  and E:, 

are properly renormalised. 
We assume that U % E,  - E ,  > t. Then, for 6 3 0 ,  there is exactly one hole per 

copper site, which acts as a pure spin. For 6 = 0, the oxygen orbitals can be eiiminared 
perturbatively. This leads to a one-band antiferromagnetic super-exchange model 
involving the copper spins alone, with the exchange energy J d d  = t4 / (&,  - E,)' + higher- 
order terms. When 6 > 0, the excess holes go into the oxygen orbitals. This suppresses 
the tendency towards antiferromagnetic ordering in the copper sublattice because ( i )  
the oxygen holes move about fairly rapidly between oxygen sites by fiipping the copper 
spins, and (ii) there is a super-exchange interaction between the copper and oxygen 
holes whose exchange energy - E,) or f 2 / [ U  - ( E ,  - E , ) ] )  is much larger than 
the copper-copper exchange energy, and which directly competes with J d d .  For 6 > 0. 
the empty and the doubly occupied states for the copper orbital can be eliminated, which 
ieads to the following approximate Hamiltonian: 

where J d d  is the copper-copper super-exchange energy and 

J ,  = ? / ( E ,  - E , )  12 = t ' / [U - ( E ,  - E C ) ] .  

The Hamiltoniar, (2) must be supplemented with the constrain: that there is exact:! 
one hole per copper site. The J 1  and J 2  terms correspond to processes in which the 
intermediate state is empty and doubly occupied, respectively. These terms, in addition 
to exchange interaction, also give rise to effective hopping of the excess holes. 

When 6 is very small, the antiferromagnetic background will inhibit the motion of 
the holes, strongly renormalising their masses, and possibly locaiising them. The problem 
of a single hole has received considerable attention (Trugman 1988, Shraiman and Siggia 
1988, Schmitt-Rink et d1988). For larger 6, the effect of the J d d  term is expected to be 
reduced, and a hole band will be formed. Even without the last term in (2) the properties 
of such a metal are likely to be vastly different from those of ordinary metals. In 
this Letter, we study these properties using a simple mean-field theory. As a first 
approximation, we thus ignore the last term in (2). 

The simplest way to handle the constraints (which commute with the Hamiltonian) 
is to introduce Lagrange multipliers A, by adding a term 2 Arc~uc,,.  In the spirit of the 
mean-field approximation we replace A, by a constant A-the same value for each site- 
so the constraints are satisfied only on average. 

We note that in the model defined by (2), part of the interaction term can be written 
as -12 d;d,  where J = J !  + J 2  and the singlet objects d ,  = frcrT - f r + c ,  behave as 
approximate bosons, and may condense, binding the oxygen hole to the copper spin. 

Although there are two oxygen orbitals for every Y, one of these can be decoupled 
by a simple canonical transformation. This is best done in the momentum space. Let 
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where 

A, = 4 - E ,  5,  = 2(cos qx + cos q y ) .  

Then it is easily shown thatf,, = A~’*bql,. Since the coupling terms involve only thef- 
operators, the b42 sector is decoupled and corresponds to a free-hole band of zero band 
width and energy E,. 

forthe mean-fieldapproximation, lets, = ( C T J : - ~ )  = OS, and b2  = (fTafr,). Then, 
making a Hartree-Fock decomposition of the interaction term in ( 2 ) ,  we arrive at the 
mean-field Hamiltonian 

HMF = Eo + (E,* - ,U) 2 C f  qa c qa + 2 ( ~ b ( q )  - ,u)b,:ubq,u + (Ea - ,PI E bi20bq2a 

where ,U is the chemical potential, J = J o  + J1, and Eo = 2JN(s2 - b’). The position of 
the effective copper level is given by 

E:  = E ,  + A + J2b2 - Jl(4 - b 2 )  

where A is the Lagrange multiplier. Finally 

E b ( q )  = Ea + JoAq 10 = +(I1 - J 2 ) .  

The band described by &b(q)  is generated by the mean-field theory and has a band width 
8 J o .  In our model, since J o  > 0 and 0 < A < 8 ,  &b(q)  2 E,. If there is no binding, s = 0, 
and, since there is one hole per copper level, E :  = p. At T = 0, the upper band described 
by ~ ~ ( q )  is empty, and all the excess holes go into the b2 level, so p = E,. In this case, 
b’ = (f:,fr,) = 0, and the ground-state energy is simply N(ec + d&, - 41,). 

Fors  # 0, the last term in (3) describes ‘hybridisation‘ between the bl  band and the 
c level. The Hamiltonian is then diagonalised using the canonical transformation: 

cqa = COS i 3 q ~ q a  +sin f3q/3$a 
with tan 28 = ~JA,/(E,* + ~ ~ ( q )  - 2u). This generates two quasi-hole bands: 

bqlo = cos f3,/3,, - sin 6 I q c Y T q - ,  

E,(q) = + [ ( E :  + ~ b ( q )  - 2 , ~ ) ’  + 4J2~2Aq]1’2 * $ ( ~ b ( q )  - E : ) .  (4) 

For J1 > J 2 ,  E+(q) > 0, whereas a portion of E-(q)  is negative (see figure 1). Since 
energies are measured relative to the chemical potential, this implies the existence of a 
sharp Fermi surface. 

To proceed further, we need to calculate the p ,  E :  and the parameters. For T = 0, 
this means solving the following equations: 

A0 
i(1- S )  = / d A  p(A) 

’0 
8 

&(1 - S )  = dA p(A)(A + y ) / P ( A )  
A0 

where P(A) = [(A + y ) 2  + x2k]’ j2 ,  y = (E,*  + E, - 2 p ) / J , ,  x = 2Js / Jo ,  A. is the vaiue 



314 Letter to the Editor 

I 

Figure 1. The quasi-hole energy in units o f J , , and  as a function of A for z = 0.2 and  6 = 0.5. 
The position of the oxygen level (i.e. the bl  band) relative to  the Fermi energy is indicated 
by the broken line. 

of A at the Fermi surface, i.e. E-(A,) = 0, andp(A) is the density of states for A. Solving 
( 5 ) :  we can determine ,U and E: as functions of z = Jo /J  and 6. 

Equation (5c) determines A, as a function of 6. Note that 0 < 6 < 1. If 6 > I. some 
of the excess holes will go into the bz  band. Recall that A, = 4 -  C COS qx + cos q)) ;  since 
the right-hand side of (5a) is positive, 4 2 A. 3 0> where A, = 4 corresponds to 6 = 0. 
Near A = 4 the two-dimensional density of states has a singularity. Thus, close to 6 = 0 
proper care must be taken in evaluating the integrals in (5). 

For finite 6,  analytic progress can be made by using a constant density of states. Then 
wefindA,=4(1 - 6) = P ( 8 )  - P(A,) -~xx"lny/(Ao),and8z=A,-yln~(Ao)~where 

v)(A0) = ( P ( 8 )  + 8 + y + ix2)/(P(ilo) + A ,  + y + 4,~~). 
we have determined x and y numerically from these relations for variGus values of 6 and 
z .  Our main results are as follows: 

(i) For our choices of parametersJl > I? ,  we have 0 < z < i, where z = $corresponds 
to U = x in the original model. We  find that there exists a solution for all 0 < z < i and 
all 0 < 6 < 1. The effective copper level position E :  and the chemical potential ,U lie 
below E, with E :  < p. This means that part of the E- spectrum is negative. The  quasi- 
hole bands are shown in figure 1. The E- band is narrow, i.e. quite flat as a function of 
A. This means that the quasi-holes are heavy near the Fermi surface. The bottom of the 
E+ band is at E ,  - p ,  and thus coincides with the b2 level. Since the Fermi surface is at 
zero, E, - ,U can be considered as a band gap. 

(ii) The model exhibits interesting behaviour as z is varied with fixed J and 6. For 
non-zero s, the condensation or binding energy is given by 

AE/J = (E,,,,,, - € R V B ) / J  = 2 ( ~ '  - zb') .  
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Figure 2. The condensation temperature Tc,  the 
excess eneigy AE. the band gap E, - U .  and ten 
times the slope of the lower band at the Fermi 
energy (proportional to T,) versus z = J , , / J .  All 
quantitiesareinunitsofJ; 6 = 0.3 and &,ischosen 
to be zero. 

6 

Figure 3. The same quantities as in figure 2 but as 
functions of 6 for z = 0.2. 

This quantity is positive in the range of parameters studied. However, AE/J-+ 0 as 
z + 0 or z + +, which means that the condensed state exists for 2 ( ~ ,  - E,) < U < x .  It is 
also interesting that s does not vanish in the limit of z 4 4. However, AE/J vanishes, so 
the condensed state and the uncondensed state (s = 0) become degenerate in this limit 
(see figure 2). We also point out that AE/J scales roughly with ( E ,  - ,u)/J as a function 
of 2. 

(iii) In figure 3, we show various quantities of interest as functions of 6 for fixed z = 
0.2. The chemica! potential acquires the largest negative value relative to E ,  at 6 = 0. As 
6 increases, E,  - p decreases and goes to zero as 6 + 1. For 6 > 1 of course we have to 
consider occupancy of the b2 band. Both AE/J and s (not shown) vanish at 6 = 0, attain 
maximum values around 6 = 3 and decrease with increasing 6. 

We can calculate the condensation temperature T, by assuming that s(T,) = 0. In 
this case, E :  = p. For finite T ,  the excess holes will be shared between the b, and b, 
bands. Let 6 = d1 + d2. Then we obtain, after some algebra, 

Jo(A + Y )  
2 z = I d A W t a n h  A+Y 2kT, 

where 

and 
Y = (kTc/Jo) W / 6 ,  - 1) 

exp(-4.ToS~/kT,) = 1 - +S,[l - exp(-8Jo/kT,)]. 
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For a constant density of states, we have calculated kT,/J as a function of z and 6, 
These results are shown in figures 2 and 3. As seen in these figures, kT, is the same order 
of magnitude as J.  kT,/J vanishes as z + 0 and z + 4. For fixed z ,  kT,/J increases with 
increasing 6, first rather rapidly, then more slowly. 

The existence of a sharp Fermi surface implies a linear temperature dependence for 
the low-temperature specific heat. The temperature scale, TF, associated with the linear 
term is roughly proportional to the band width of the E- band. For T TF,  we assume 
that on!y the E- band continues to be occupied. Then a Sommerfeld-type expansion can 
be used to obtain C/Nk = n2T/2TF, where TF is approximately given by 

Since as a function of A the E- band is rather narrow and flat near the Fermi surface, 
equation (7) implies a low value for TF compared with J or T,. The quantity lOE'(A,)/J 
is shown in figures 2 and 3 as functions of z and 6. Clearly, E'  is roughly an order of 
magnitude smaller than kT,, so TF is only a fraction of T,. A small value of TF reflects a 
large mass for quasi-particles (in conventional language, a large value for y = C / q .  
Note that this mass renormalisation comes directly from the copper-oxygen interaction, 
and not from the antiferromagnetic background. 

To summarise, we find that in contrast to the case for ordinary metals, the normai 
state of the copper oxide superconductor is rather unusual. The physical picture is that 
of the propagation of an oxygen hole whose spin is bound to the copper spins as a singlet. 
Thus the charge carrier has spin zero and charge e. We find that because of the binding, 
the hole mass is strongly renormalised. For strong binding, a hole carries a spin in the 
copper sublattice, giving credence to the Zhang and Rice (1988) picture. The formation 
of the singlet has also been studied recently for the case of a single copper ion (Eskes 
and Swatzky 1988). 

In many wajis, the model is similar to the K o n d ~  lattice. The differences are that the 
binding to the copper spins is very strong, as seen from the fact that I", is much larger 
than TKondo. Also the number of conduction holes is small, and the holes are not as heavy 
as in the latter case. 

Helpful conversations with P B Visscher, A Stern, H R Krishnamurthy, C Jayprakash 
and N Bonesteel are acknowledged. This research was supported by a University of 
Alabama summer grant. 
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